Long Time Behavior for Solutions of the Diffusive Logistic Equation with Advection and Free Boundary
نویسندگان
چکیده
We consider the influence of a shifting environment and an advection on the spreading of an invasive species through a model given by the diffusive logistic equation with a free boundary. When the environment is shifting and without advection (β = 0), Du, Wei and Zhou in [16] showed that the species always dies out when the shifting speed c∗ ≥ C, and the long-time behavior of the species is determined by trichotomy when the shifing speed c∗ ∈ (0, C). Here we mainly consider the problems with advection and shifting speed c∗ ∈ (0, C) (the case c∗ ≥ C can be studied by similar methods in this paper). We prove that there exist β∗ < 0 and β∗ > 0 such that the species always dies out in the long-run when β ≤ β∗, while for β ∈ (β∗, β∗) or β = β∗, the long-time behavior of the species is determined by the corresponding trichotomies respectively.
منابع مشابه
Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملStudy of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium
Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...
متن کاملTwo-dimensional advection-dispersion equation with depth- dependent variable source concentration
The present work solves two-dimensional Advection-Dispersion Equation (ADE) in a semi-infinite domain. A variable source concentration is regarded as the monotonic decreasing function at the source boundary (x=0). Depth-dependent variables are considered to incorporate real life situations in this modeling study, with zero flux condition assumed to occur at the exit boundary of the domain, i.e....
متن کامل